
Modeling a Detection of Internally Reflected Cherenkov Light (DIRC) Particle
Detector for High-Multiplicity Collisions

Wilka Carvalho∗

Stony Brook University
(Dated: August 17, 2015)

This paper aims to explore the feasibility of using a Detection of Internally Reflected Cherenkov
light (DIRC) to identify particles in high-multiplicity events. In order to study this question, we are
developing a particle identification (PID) algorithm that identifies particles from high-multiplicity
collisions that intersect with a DIRC. We model the DIRC and use a Monte Carlo to generate
the Cherenkov light data one would obtain from it. The PID algorithm operates on this data. It
consists of a pattern recognition algorithm that correlates the angular distribution of the Cherenkov
light to the trajectories of each particle that produced it. We attempt to reduce the analyses of
high-multiplicity events into analyses of low- to single-multiplicity events. By doing so, we extend
the DIRC’s proven efficacy in low-multiplicity events to high-multiplicity events.

INTRODUCTION

We are interested in studying whether a Detection
of Internally Reflected Cherenkov light (DIRC) parti-
cle detector can be used to identify particles from high-
multiplicity collisions. This paper will first motivate the
choice to use a DIRC, citing relevant previous success.
We will follow with an overview of relevant DIRC con-
cepts and functionality. Next, we will discuss specifica-
tions for the DIRC we modeled, the Monte Carlo used to
generate Cherenkov light data, and the PID algorithm
we have developed to test the DIRC at high-multiplicity.
The PID algorithm will be this paper’s main topic of dis-
cussion as it details the DIRC’s performance at various
levels of multiplicity, most notably high-multiplicity. We
will conclude with a summary of our PID algorithm’s
performance.

Physics Motivation

It is common for colliders such as the Relativistic
Heavy Ion Collider to run experiments that produce
events of high-multiplicity. In these experiments, details
of the particle production in the collision are largely un-
known. Understanding these details may bring insight
into the forces (such as the strong force) driving particle
production in these events.

Particle detectors are employed to learn about these
details. They generally consist of 3 components: track-
ing detectors, PID detectors, and caloriometers. Track-
ing detectors in conjuction with a magnetic field are used
to determine the momentum of particles, PID detectors
determine the velocity of particles, and calorimeters de-
termine the energy of particles. In this study, we focus on
the second component, a PID detector - our solution is a
DIRC detector. We assume that there is a tracking sys-
tem that provides momentum, and position information
at the location of the DIRC.

DIRC overview

A Detection of Internally Reflected Cherenkov light
(DIRC) particle detector is a ring-imaging Cherenkov
counter (RICH) [1]. RICH’s function by utilizing
Cherenkov light. DIRCs, specifically, consists of a ra-
diator (such as quartz) and a light-sensitive detector at
the end. The radiator both preserves angular informa-
tion and guides the Cherenkov light to the detector sur-
face. There, the light’s angular information is recorded
[2]. Typically, the radiator has a simple form (a rectan-
gular bar in our case) in order to minimize the complexity
of the resultant angular distribution of the light due to
reflections inside the radiator.

When a charged particle traverses through a radia-
tor medium with index of reflection n > 1, it emits
Cherenkov light (photons) at a well defined angle θe given
by

θe = cos−1
(

1

nβ

)
(1)

where β = vP /c, vP is the speed of the particle and c is
the speed of light. β is related to the particle’s mass m
and momentum p via

β =
p

(m2v2P + p2)1/2
. (2)

Photons are maintained within the radiator by total in-
ternal reflection. The critical angle above which photons
are reflected within the radiator is given by

|Θe| > Θc = sin−1
(

1

n

)
, (3)

where Θe is a solid angle described by (θe, φe) as in Figure
(1) (φe is an arbitrary angle between 0 and 2π). Pho-
tons maintained due to total internal reflection can be
analyzed along with knowledge of a particle’s trajectory
and momentum to determine its identity. One can find
a visual representation of a particle traversing through a
DIRC in Figure (1).
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FIG. 1. Schematic diagram of a DIRC. Both panels display a particle penetrating the DIRC’s quartz bar, and the path of the
resultant radiation (Cherenkov light). Particles always penetrate the bottom wall (on the xz−plane) and travel inside releasing
Cherenkov light at their Cherenkov angle θe determined by Eq. (1) with a polar angle φe uniformly distributed from 0 to 2π.
This light travels to the photon detectors at the ends of the DIRC. The Cherenkov light’s position, angle, and time is recorded
here. (Note: each end along the z-axis has a photon detector.) The particle’s trajectory is in blue, while the Cherenkov light’s
trajectory is in red. The top panel displays the side view (on the yz−plane) of this phenomenon, while the bottom panel
displays the top view (on the xz−plane).

The DIRC at BaBar

A DIRC was first used in the BaBar detector at the
Stanford Linear Accelerator Center (SLAC) to study the
Charge Parity (CP) violation in the decays of B0 mesons
from Υ (4s) produced by the asymmetric e+e− collider
PEP-II [3]. In order to study CP violation, high quality
particle identification for kaons (K) and pions (π) was
needed over a large range of solid angle and momentum
[3]. Their PID algorithm was developed to perform well
over the range of 700MeV/c to 4GeV/c, allowing for π-K
separation well above four standard deviations[3].

Their DIRC consisted of quartz bars of thickness
1.72cm, width 3.5cm, and length 490cm, with index of
refraction n = 1.474 [3]. Light from all bars was detected
by one photon detector with a resolution of 7mrad[3].

Our DIRC and PID algorithm

Particles typically seen in high-multiplicity events in-
clude Kaons (K), Pions (π), Electrons (e), and Protons
(p). Of these particles, the most difficult separation is
e-π separation. For this reason, we have focused on this
separation at increasing levels of multiplicity.

As a reference we have modeled the DIRC after the
DIRC used in the BaBar experiment [3]. We use its
specifications in all Monte Carlo simulations and in all
analyses. Instead of using one photon detector for all
bars, we use 2 cameras per bar (one at each end of the

bar along the z−direction).

METHODS

In order to model and test our DIRC and PID algo-
rithm, we have created a Monte Carlo that generates
particles and simulates their trajectory inside the DIRC.
It outputs the photon information that one would obtain
from a DIRC detector. Currently, we study one DIRC at
(R = 100cm, ηb = 0) on the y, x−place (see Figure (2)).

The Monte Carlo is implemented through two li-
braries. The first (called the Particle-Generator) is used
to generate particles and the second (called the Photon-
Generator) to simulate particle(s) traversing through the
DIRC and output the resultant photon information.

Once the photon information is produced, it is stud-
ied with a third library, the Particle-Reconstructor. We
attempt to reconstruct the identity of each particle that
entered the DIRC by studying the relation between the
photon information and the particle’s trajectories. We
assume knowledge of the momentum and impact points
of each particle.

All libraries for this project have been written in C++.
For further analysis, a number of scripts have been writ-
ten in C++ and Python. All scripts and libraries used
for this project are agglomerated into the larger library,
dirc-detector. It is hosted on GitHub[4]. This library re-
lies extensively on the Data Analysis Framework ROOT
[5].
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FIG. 2. This diagram is a visual representation of the particle
generation process. All particle’s are created with starting
coordinates (0,0,0). A particle’s initial direction is defined by
angle (ηb, φb) (ηb is on the yz−plane with ηb = 0 being on
the y−axis, and φb is on the xz−plane with φb = 0 being on
the z−axis). A magnetic field gives rise to a curvature in the
particle’s trajectory. This trajectory is labeled a (for arc) on
the diagram. In our analysis, we have one DIRC situated at
η = 0 at a distance of R = 100cm. Particles intersect this
DIRC on the xz−plane at some (zP , xP , yP ). They are then
further used in our Monte Carlo.

MONTE CARLO

Particle Generation

In this stage of the Monte Carlo, we generate particles
that would be emitted from a beam collision. All parti-
cle are emitted from a single point (z = 0, x = 0, y = 0).
Timing for each particle begins when the particle is emit-
ted. Particles are emitted with pseudorapidity ηb and
azimuthal angle φb. Here, ηb has a uniform distribution
about (−.5, .5), while φb has a uniform distribution about
(0, 2π). Each particle has an equal probability of having
a negative or positive charge. All particles are emitted
with momenta probability that follows a steeply falling
momentum distribution:

P (p) = A

p
GeV/c

1
2 + ( p

GeV/c )
4

(4)

where P (p) is the probability of a particluar momentum
value p, and A is a normalization constant. The domain
of the momentum is confined to (0 : 3)GeV/c. P (p)
is normalized such that its integral over the range from
0GeV/c to 3GeV/c is 1. There are 4 choices for the par-
ticles that will be emitted:

Particle Mass (GeV/c2)

e .511× 10−3

π 0.140

K 0.494

p 0.938

each with an equal probability of being chosen.
Once a particle is emitted, its trajectory is calculated

in order to determine whether it will intersect with the
DIRC. Defining NP as the number of particles emitted
from the beam collision, Nmax

P as the maximum number
of particles to be emitted, Ni as the number of particles
that intersect with the DIRC, and Ndirc

i as the desired
number of particles to intersect with the DIRC– particles
are emitted from the beam collision until either Ni =
Ndirc
i or NP = Nmax

P . NP = Nmax
P only occurs when

Ni ≤ Ndirc
i . Once a particle is determined to intersect

with the DIRC, its time of flight is calculated as

tP = a/vP (5)

where a is the arc length from (0, 0, 0) to the coordinate of
intersection (zP , xP , yP ). The number of photons which
it will produce per unit length in the DIRC (photons/cm)
is determined by

dN

dx
= 2πz2α(1− 1

n2β2
)

∫ 900×10−9m

200×10−9m

dλ

λ2
(6)

where λ is the wavelength range of interest and α
is the fine-structure constant (approximately 7.297 ×
10−3C2/(eV · F ) [6]. We choose the a λ range of
(200 : 900) × 10−9m because that is the approximate
wavelength transparency range for the material of our
DIRC, quartz.

Photon Generation

At this stage, each particle’s trajectory within the
DIRC is simulated. The length of the path ρ within
the DIRC that each particle will take is calculated. It
depends on the impact point and angle. The expected
number of photons that each particle will release is then
determined by using (6) as EE = ρdNdX . The actual num-
ber of photons to be produced by a particle follows a
poisson distribution with mean EE . Each photon is pro-
duced in the following manner:

1. A point between 0 and ρ along the particle’s trajec-
tory, ρ′, is randomly chosen as the emission point.

2. The photon is emitted with angles θe, φe with re-
spect to the particle’s direction of travel where θe is
determined by Eq. (1) and φe is randomly chosen
between 0 and 2π.
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3. The photon inherits its particle’s time of flight to
the DIRC tP , along with the time necessary for that
particle to travel to ρi as its starting time.

4. Each photon has a velocity v = c/n.

After being produced in the frame of the particle, each
photon is rotated into the frame of the detector and its
path in the DIRC is simulated as follows:

1. We seperate each photon velocity into 3 compo-
nents (z, x, y) and find the photon’s time of travel
to each wall of the DIRC bar (wz, wx, wy). The
time to travel to each DIRC wall is calculated as
tj =

dj
vj

where j = z, x, y, dj is the distance to wall

wj , and vj is the velocity along the j−axis. The
wall corresponding to the lowest tj is chosen–if two
compete, one is randomly chosen among the two.

2. The angle with which the photon will reflect off a
wall is determined by

Θ = cos−1
(

(~v) · (−n̂j)
|~v||n̂j |

)
,

where n̂j is a unit vector along the j−axis. If Θ <
Θc, where Θc is calculated with (3) as 0.745rad
(∼ π/4), then the photon is eliminated from the
list.

3. If the photon wasn’t eliminated, it reflects and this
process continues until the photon reaches one of
the open ends of the DIRC bar.

4. Once the photons hit the detector surface, their
final (θ, φ) is smeared by a gaussian distribution
centered at 0 with a width equivalent to our single
photon resolution of 1σ = 10mrad. This resolution
both handles the resolution of the photon detector
and the deviations in angle caused by imperfect
reflections.

This marks the end of the Monte Carlo.

PID

Single-Particle Analysis

The first step in this analysis was to study the response
to one particle. We developed the following algorithm.

Each photon will most likely have reflected off a wall
along the x− and y−direction. We determine all possible
photon angles by accounting for all possible reflections.
This results in (θ, φ) = (±θ,±φ), one of which corre-
sponds to the original (θe, φe).

After determining all possible photon angles, we use
the known trajectory of each particle to rotate each pho-
ton into the frame of each particle. All unphysical photon
angles (e.g. all angles with θ > π

2 ) are eliminated.
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FIG. 3. Top: Distribution of all photon angles captured on
the photon detector surface. Middle: Distribution of all pos-
sible photon angles (±θ,±φ). Bottom: All the possible pho-
ton angles rotated into the frame of a particle trajectory.

This is done for each particle, seperately. For example,
if there were a total of 2000 photons and 6 particles de-
tected, all 2000 photons would be rotated in to the frame
of each particle. An example of this process is shown in
Figure (3).

Rotation into the particle’s frame produces a concen-
tration of photon angles at θe. This can be seen in the
third plot in Figure (3), where the θ−axis has a clear
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straight line at θ ∼ .8. Thus, it can be used to statisti-
cally calculate θe for a particular particle. All analysis
done on the photons in this rotated frame produces re-
sults for only that particle.

(As a reminder, EE has been used as the expected
number of emitted photons–EF will be used as the found
number of emitted photons. Following this convention,
θE will refer to the expected θe value and θF to the found
θe value.)
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FIG. 4. Top: θe−projection of the photon angles rotated into
the frame of a particle. The rotated photon angles are those in
the bottom panel of Figure (3). Bottom: A zoomed-in plot
of the plot above with Eq. (7) fit. The fit does not extend
beyond a few sigma away from the gaussian center, so as to
ensure that most angles used are correct photon angles.

In order to statistically calculate a particle’s θe, we
apply a fit to the θe−projection of rotated photon angles.

In Figure (4), we show the θe−projection of the rotated
photons displayed in the the bottom panel of Figure (3).
In the bottom panel of Figure (4), we see that the photon
angle distribution resembles a gaussian distribution, thus
a gaussian distribution is fit.

By considering every photon reflection in our analysis,
we both increases our background noise and the number
of correct photon angles used in our gaussian fit. We
account for this background noise by fitting a gaussian
distribution plus a constant

f(θ) = ae

(
− (θ−θF )2

2σ2
θ

)
+ b (7)

where θF takes on the emission angle of the different par-
ticle types, σθ the single photon resolution (1σ), a is the
gaussian amplitude, b the gaussian center, c the gaussian
width, and d a constant accounting for the background.

Because we are dealing with the separation of a finite
set of particles (K,π, p, e), we know θe can only be one
of 4 values. As we know the momentum of the particle
and each particle type has an associated mass, for every
possible particle type, we can use Eq. (1) and Eq. (2) to
determine the expected emission angle θE .

As long as we fit the gaussian locally (as is visible in the
bottom panel of Figure (4)), we primarily fit the correct
photon angles, thus primarily benefitting from using all
possible photon angles (±θ,±φ). Using gaussian statis-
tics, we can capitalize on the fact that the accuracy of
obtaining the particle’s θe via a gaussian fit increases in
proportion to the square-root of the gaussian’s integral
EF (our resolution increases from 1σ to 1σ/

√
EF ).

We also use Eq. (7) to determine the number of pho-
tons emitted by a particle. We calculate the integral
(which includes the spread of θe values by a smearing of
1σ) to be EF :

EF =

∫ ∞
−∞

(f(θ)− b)dθ. (8)

Single-Particle Performance

The accuracy of θF is directly dependant on the num-
ber of photons detected EF . Thus, we use a resolution
of σd = 1σ/

√
EF .

The deviation from the expected value θF−θE is quan-
tified in terms of the resolution σd as

∆σθ =
(θF − θE)

√
EF

1σ
=

(θF − θE)

σd
. (9)

Similarly for EF − EE , the deviation is quantified as

∆σE =
(EF − EE)√

EE
, (10)

EE depends on a particle’s type. We calculate it as
follows:
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FIG. 5. Plot of f vs. e for single-particle events. Events with pions were used for f , and events with electrons were used for
e. Each momentum value encompasses all values within .25GeV/c, e.g. p = 2.25 corresponds to p = (2 : 2.5)GeV/c. f remains
at ∼ 0% with e as high as 90% until p = 1.75. f rises to ∼ 1% with maximum e ∼ 70% at p = 2.25, afterwards it rises to just
below 10% with maximum e lowering to just ∼ 65% at p = 2.75. We see that the f vs e begins to show an appreciable increase
at p ∼ 2.75.

For a particular particle and assumed particle type,
we emit 50 photons with θe corresponding to that
particle and φe evenly distributed around (0 : 2π)
at 100 discrete steps along that particle’s path
length. The total number of photons released is
T . A photon requires an angle greater than ΘC

(approximately π/4) with respect to the wall its
reflecting off in order to pass the critical angle cut.
Reflecting with such an angle, after each reflection,
a photon should travel to an adjacent wall. We al-
low photons to reflect 3 times. After 3 reflections,
one of the z, x, and y walls should have been re-
flected by the photon. As the angle with which
a photon will reflect off a wall is consistent due to
snell’s law, after 3 reflections, it should be apparent
whether a photon will or will not pass the critical
angle cut. If a photon passes the critical angle cut
it contributes to P. EE is then calculated as

EE = ρ
P

T

dN

dx

where ρ is the particle’s path length and dN
dx cor-

responds to (6), the number of photons per unit
length.

Despite the critical angle cut, we treat to EE to be a
poisson statistic, thus using

√
EE .

A particle is identified as a certain type if the uncer-

tainty for that type is below some threshold m, i.e., ∆σE
and ∆σθ are both below m:

|∆σE | < m, (11)

and

|∆σθ| < m. (12)

Every particle has a |∆σi| (where i = E, θ) for each of
the 4 possible particle types, π, p, e,K. If multiple par-
ticle types have a |∆σi| < m, the particle type with the
smallest |∆σi| is chosen as the particle’s identity. Sup-
pose there is an pion with the following:

Particle Type |∆σi|
π .8

e .5

K 12

p 4.2

If m ≥ .5, the pion will be identified as an electron, if
m < .5, we conclude that the analysis was unable to
resolve the particle’s identity.

In order to analyze our PID algorithm, we study the
percent with which we false-positively identify a particle
by another type and the percent with which we correctly
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identify a particle as itself. We call the former our false-
positive rate f and the latter our efficiency e. For exam-
ple, our false-positive rate could be defined by the propor-
tion of instances in which a electron was false-positively
identified by a pion, whereas the efficiency could be the
proportion of instances in which an electron was correctly
identified by an electron. We study the evolution of f in
terms of e by varying m. As m increases, it is easier to
identify a particle as itself but it also becomes easier to
identify a particle as another particle.

Returning to the example above, studying the false-
positive rate of electrons as pions, we would vary the
threshold and see how often a pion is identified as ei-
ther a pion or electron. The example particle would have
contributed to f if m ≥ .5.

As e-π seperation is the hardest seperation we face,
this is how we tested our algorithm in for single-particle
events. One can see our f vs. e plot in Figure (5). We
were able to retain high discrimination (f < 1%) until
p = 2.5GeV . At higher momentum, we maintained f <
10%.

The ∆σi distributions produced neither have a width
of 1 corresponding to 1σi, nor are they centered at 0. This
makes it more cumbersome to determine the m value(s)
to cut ∆σi on. To faciltiate this process, we calibrate
all ∆σi values. This calibration process centers all ∆σi
distributions at 0, and casts σi as the the width of the
distribution. By doing so, all decisions of whether a par-
ticle will or will not be identified as a particle type is
simplified to determining if |∆σi| < m, rather than cal-
culating specific m values per distribution. We avoid one
more complication: as ∆σi is dependent on θe which is
dependent on momentum, ∆σi is indirectly related to
momentum. This requires that we determine m values
for specific momentum ranges for each distribution. We
avoid this. Details on this calibration can be found in
the appendix.

Multi-Particle Analysis

As the number of particles that enter the bar increases,
for a particular particle, θF may shift away from θe due
to the large number of cherenkov photons not associated
with the particle being investigated.

In Figure (6), one can clearly see the non-linear back-
ground that surrounds the peak at θe. While a gaus-
sian plus constant provides a decent fit to Figure (6),
the accuracy σd is compromised and misindentification
becomes more likely. The background makes it unclear
which photons belong to the particle and which do not.
When fitting Eq. (7), d can easily take a value that is
too large or too small. This makes EF innacurate. This
is especially true for cases, such as the one in the second
plot of Figure (6), where the background is not constant.
In summary, both θF and EF can show appreciable de-
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FIG. 6. Top: A distribution of photon angles from multiple
particles rotated into one particle’s frame. While the back-
ground is larger than with 1 particle, it is easy to visually
recognize the particle’s emission angle (∼ .8). Bottom: The
theta projection of the distribution. A peak at ∼ .8 corre-
sponding to the emission angle clearly sits atop a large and
variable background.

viation from their true values.

In order to mediate this problem, we index the photons
by the particle we posit that they belong to. Looking at
Figure (6), one can still see clear peaks in the vicinity of
the θ values which correspond to the particle’s emission
angle. This observation is used to index the photons.

We first rotate all photons into the frame of a partic-
ular particle. In the particle’s frame, we search for the
peak θ in the general vicinity of θE (within 5σ) and label
it θ′e. Once θ′e is found, we associate all photons with
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|θ′e − θe| ≤ 3σ to that particle. Every index corresponds
to a particle–if a photon has a θe within 3σ of θ′e for mul-
tiple particles, it is marked as ambiguous. In Figure(7),
we have color coded the photons associated with individ-
ual particles. All photons that are marked as ambiguous
are colored black.
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FIG. 7. Top: The distribution in the top panel of Figure (6)
with each photon colored by its particle membership. Pho-
tons of ambiguous membership are colored black. Middle:
The θe−projection of the photons associated to the red parti-
cle. There is a clear improvement in the level of background.
Bottom: Gaussian fit to the θe−projection above.

After all photons have been indexed, each particle and
its associated radiation is analyzed. Just as before, we fit
(7) to the θ−projection of the photons in the particle’s
frame. However, this time, we only create a projection of
the θ values for photons associated unambiguously with

the particle of interest. In the case of Figure (7), only
photons colored red were used in the middle plot. Photon
sets with sufficiently low counts (< 50) are discarded as
un-analyzable.

RESULTS

For all results, fi was defined as the number of times a
pion was identified as an electron in a particular momen-
tum range ∆pi and ei the number of times an electron
was identified as an electron in a particular ∆pi. Particle
generation is restricted to the generation of pions or elec-
trons as e-π separation is the most difficult separation we
face.

Low-Multiplicity: Ndirc
P = 1

For this study, we separately generated 3000 events of
either strictly pions or strictly electrons with Ndirc

P = 1.
We found our fi to remain below 5% with ei up to 90%
for p < 2.5GeV/c. At momentum higher than 2.5GeV/c,
f remains below 10%.

Medium-Multiplicity: Ndirc
P = 6

For this study, we first generated 2000 events of strictly
pions with Ndirc

P = 5. In order to study fi we embedded
one pion with p following the distribution defined by (4);
for ei the same procedure was involved except electrons
were embedded in place of pions. We found our fi to
remain below 5% with ei up to 60% for p < 2GeV/c.

CONCLUSION

We have developed a PID algorithm capable of dis-
entangling radiation information for strong particle sep-
aration with a minimal fi for p < 2GeV/c. This PID
algorithm has not yet utilized the temporal distribution
of the particle’s radiation, something we believe will be a
key factor in pushing our success to higher multiplicities.

Calibration

Data calibration consists of two steps: (1) generating a
calibration distribution and (2) applying the calibration
distribution to a data set. Step (1) is only performed
once per major change to the Monte Carlo and Particle-
Reconstructor, while step (2) is applied to every data set
of particle reconstructions.
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FIG. 8. Plot of f vs. e for 6-particle events. All events had 5 pions. A pion was embedded for f , and an electron for e. f
remains at ∼ 0% with e as high as 60% until p = 1.75. f rises to as high as ∼ 10% with maximum e ∼ 50% at p = 2.25. It
then rises to just ∼ 15% with maximum e ∼ 65% at p = 2.75. We see that the f vs e begins to show an appreciable increase
at p ∼ 2.25 rather than p ∼ 2.75 like with single-particle events.

Calibration distributions are generated per particle
type. In order to generate the distribution for a partic-
ular type, a monte carlo is run with 10,000 events, each
containing one particle of the desired type. The Particle
Reconstructor generates a distribution of σθ and σE val-
ues. These values are sorted by the momentum of the as-
sociated particle. σθ and σE distributions are separated
into clusters by momentum ranges of ∆p = .25GeV/c.
For each distribution, a gaussian g(x) is defined whose
center C is nearby the distribution peak and whose width
W is defined as the domain about C which produces an
integral G(x) such that

G(x) =

∫ C+W

C−W
g(x)dx ∼ .68%

∫ C+5W

C−5W
g(x)dx

of the counts of the distribution.

Each particle reconstruction is calibrated via

σi =
(σi − Ci)

Wi
,

where i = θ,E. Separate calibration distributions are
produced for both the radiation and the emission angle
uncertainties.
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FIG. 9. A sample ∆σE distribution. It is centered at ∼ 1.4
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